CAR-T and Other Immunotherapies in Myeloma

Ivan Borrello, M.D.

bb2121: BCMA CAR T Cell Design

- Autologous T cells transduced with a lentiviral vector encoding a CAR specific for human BCMA
- Optimal 4-1BB costimulatory signaling domain: associated with less acute toxicity and more durable CAR T cell persistence than CD28 costimulatory domain¹

1. Ali SI, et al. Blood. 2016;128(13):1688-700.

CAR-T Toxicities

Clinical Efficacy of CAR-T Therapy in Patients Not Achieving a CR

4

Treatment History

Parameter	Esca (N:	Escalation (N=21)		Expansion (N=22)	
Median (min, max) prior regimens	7 (3	7 (3, 14)		, 23)	
Prior autologous SCT, n (%)	21 (21 (100)		19 (86)	
0		0		3 (14)	
1	15	15 (71)		14 (64)	
>1	6 (6 (29)		5 (23)	
	Escalati	Escalation (N=21)		Expansion (N=22)	
Parameter	Exposed	Refractory	Exposed	Refractory	
Prior therapies, n (%)					
Bortezomib	21 (100)	14 (67)	22 (100)	16 (73)	
Carfilzomib	19 (91)	12 (57)	21 (96)	14 (64)	
Lenalidomide	21 (100)	19 (91)	22 (100)	18 (82)	
Pomalidomide	19 (91)	15 (71)	22 (100)	21 (96)	
Daratumumab	15 (71)	10 (48)	22 (100)	19 (86)	
Cumulative exposure, n (%)					
Bort/Len	21 (100)	14 (67)	22 (100)	14 (64)	
Bort/Len/Car/Pom/Dara	15 (71)	6 (29)	21 (96)	7 (32)	

Data cutoff: March 29, 2018. SCT, stem cell transplant.

Cytokine Release Syndrome

Cytokine Release Syndrome Parameters				
Parameter	Dosed Patients (N=43)			
Patients with a CRS event, n (%)	27 (63)			
Maximum CRS grade ^a None 1 2 3 4	16 (37) 16 (37) 9 (21) 2 (5) 0			
Median (min, max) time to onset, d	2 (1, 25)			
Median (min, max) duration, d	6 (1, 32)			
Tocilizumab use, n (%)	9 (21)			
Corticosteroid use, n (%)	4 (9)			

Cytokine Release Syndrome By Dose Level

Data cutoff: March 29, 2018. a CRS uniformly graded according to Lee DW, et al. Blood. 2014;124(2):188-195. b 3 patients were treated at the 50 x 10⁶ dose level for a total of 43 patients.

bb2121 CAR+ T Cell Expansion

Patients with a post-baseline vector copy value were included. One patient was dosed at 205 \times 10⁶ CAR+ T cells instead of the planned 450 \times 10⁶ and was included in the 450 \times 10⁶ dose group.

	Month 1	Month 3	Month 6	Month 12
At risk, n	32	26	16	10
With detectable vector, n (%)	31 (97)	22 (85)	7 (44)	2 (20)

Data cutoff: March 29, 2018. C_{max}, maximum serum concentration; LLOQ, lower limit of quantitation.

Peak bb2121 Vector Copies in Responders vs Nonresponders

Patients with ≥ 2 months of response data and 1 month of vector copy data (N=36). *P* value based on a 2-sided Wilcoxon rank sum test.

- Comparable C_{max} in active dose cohorts (≥150 × 10⁶ CAR+ T cells)
- Durable bb2121 persistence (≥6 months) in 44%
- · Higher peak expansion in patients with response

Tumor Response: Deep MRDnegative responses observed

Response	50 × 10 ⁶	150 × 10 ⁶	450 × 10 ⁶	800 × 10 ⁶	Total
MRD- evaluable responders	0	4	11	1	16
MRD-neg ^a	0	4 (100)	11 (100)	1 (100)	16 (100)

Data cutoff: March 29, 2018. ^aOf 16 MRD-negative responses: 4 at 10⁻⁶, 11 at 10⁻⁵, 1 at 10⁻⁴ sensitivity by Adaptive next-generation sequencing assay.

- All responding patients evaluated for MRD were MRD negative at 1 or more time points
- 2 nonresponders evaluated for MRD were MRD positive at month 1

Progression-Free Survival

- mPFS of 11.8 months at active doses (≥150 × 10⁶ CAR+ T cells) in 18 subjects in dose escalation phase
- mPFS of 17.7 months in 16 responding subjects who are MRD-negative

Data cutoff: March 29, 2018. Median and 95% CI from Kaplan-Meier estimate. NE, not estimable. ^aPFS in dose escalation cohort.

Marrow Infiltrating Lymphocytes

MILs Persist in the Bone Marrow and Eradicate Myeloma

First MILs Clinical Trial

Figure 1: Study Schema

Tumor Specificity of aMILs Product

Tumor-specific Response in the BM Correlates with Clinical Outcomes

(Noonan et al. STM 2015; 7:288)

41BB Expression with Expansion

Hypoxia Enhances Function in 4-1BB+ T cell Subset

JOHNS HOPKINS

In vivo MILs Expansion

Superior Killing by MIL-CARs Compared to PBL-CARs

N.B: 8226 cells was added on days 3 or 7 days after the primary 8226 challenge

MIL CARs: More Data Showing Superior Killing via the CAR in MIL CARs vs. PBL CARs

MIL CARs: Preserve the Endogenous TCR-mediated Killing

Tumor Specificity Assay Testing ability of Native TCR to Recognize Tumor Ag:

Conclusions

- Tumor specificity of MILs correlates with clinical outcomes
- Memory phenotype, broad antigenic specificity are properties unique to MILs and not found on PBLs
- T cell persistence correlates with responses
- Hypoxia augments T cell function of MILs through
 - upregulation of 4-1BB
 - increase in anti-apoptotic proteins and survival cytokines
 - Enhance ex vivo and in vivo expansion
- The absence of a PFS plateau with BCMA CARs limits the longterm efficacy of this approach in MM
- MILs appear to show better anti-tumor activity as a source of CAR-modified T cells than PBLs

21

Acknowledgements

Myeloma Group

Abbas Ali Carol Ann Huff Bill Matsui Amy Sidorski Satish Shanbhag Jenn Hanle

Clinical Research

Laura Cucci Leo Luznik Phil Imus Maria Yankouski Amanda Stevens

Cell Therapy Lab

Janice Davis Vic Lemas Sue Fiorino

Borrello Lab

Megan Heiman Valentina Hoyos Luca Biavati Danielle Dillard Ervin Griffin Amy Thomas

WindMIL Kim Noonan Eric Lutz Lakshmi Rudraraju

Funding NIH BMT PO1

LEUKEMIA & LYMPHOMA SOCIETY[®] fighting blood cancers

Commonwealth Foundation

